ЦИРКУЛЯЦИОННЫЕ ИНЖЕНЕРНЫЕ СИСТЕМЫ

Установка замкнутого водоснабжения - рыба под присмотром
О нас
Занимаемся проектированием, строительством и комплектацией оборудования рыбоводных ферм
Спроектируем рыбоводную ферму под Ваши цели
Рассчитаем процесс выращивания и потребление ресурсов
Подберем оборудование, материалы и посадочный материал
О нашем проекте:
Миллион мальков осетра недорого?
Универсальный инкубационно-мальковый цех с установкой замкнутого водоснабжения.
Для выращивания личинки и малька в Конаковском филиале ВНИИПРХ ("Конаковский завод по осетроводству") и в Научно-исследовательском центре инкубации и выращивания рыбы Опытного селекционно-племенного хозяйства «Якоть» была применена простая и недорогая технология замкнутого водоснабжения с контролируемыми условиями содержания.
Потребление установкой воды, тепла и электроэнергии минимизированы за счёт многократного использования воды, подогрева её за счёт отопления, отсутствия больших перепадов высот, применения современного энергоэффективного оборудования. Потребление ресурсов снижено более чем в 10 раз по сравнению с традиционными прямоточными технологиями (использование воды 1 раз).

Источник: Лаборатория комплексной интенсификации прудового рыбоводства, первый заместитель директора А.В. Мышкин.
Фото: Коллекция ВНИИПРХ.
НЕМНОГО ТЕОРИИ
Установка замкнутого водоснабжения (УЗВ ), система оборотного водоснабжения (СОВ) и нагульные пруды проектируются под конкретный вид и товарную навеску выращиваемой рыбы.
УЗВ представляет собой резервуар для выращивания рыбы, систему водоподготовки, которая включает в себя механическую, биологическую и физико-химическую очистку, с возможностью поддержания и регулировки температурных режимов, с системами насыщения воды кислородом, стерилизацией озоном или УФ, системами поддержания заданного уровня воды и сброса воды.

Рыбе для жизни необходима постоянная циркуляция воды, поэтому она является основой для содержания рыбы.
Проект выполненной УЗВ для осетра, производительность фермы 6 тонн, в 3D
УЗВ осетр 20 тонн
Водоем для белуги
УЗВ для осетровых, 6 тонн
УЗВ для сома, 6 тонн
УЗВ для осетровых
Мини УЗВ для тиляпии
Как мы работаем
1
Индивидуальный подход
Вы связываетесь с нами, рассказываете Ваши идеи, на их основе мы готовим проект будущей рыбной фермы.
2
Команда - это важно
В нашей команде есть все необходимые мастера. Мы утверждаем проект, смету, подготавливаем необходимую документацию, закупаем оборудование и материалы, организуем доставку и приступаем к работе.
3
Помощь и поддержка
Запускаем Вашу ферму и помогаем ухаживать за ней. Поможем советом, проведем консультацию и поможем решить Ваши проблемы.
Статьи
Пресноводная УЗВ для передержки
Установка замкнутого водообеспечения в цикле которой используется пресная вода, и назначение которой состоит во временном содержание гидробионтов без наращивания биомассы/кормления. Другое название — промышленный аквариум.

Необходимость в подобных установках возникает часто, это обусловлено несовпадением производства и потребления рыбы. Покупателю хочется бы чтобы рыба продавалась круглый год по одной цене возле его дома, тогда как производитель выращивает рыбу у себя на ферме далеко от покупателя и часто его производство носит сезонный характер.

В отличие от промышленных аквариумов с морской водой, содержание пресноводных аквариумов, обходится недорого, поэтому в большинстве случаев применение сложных и дорогих методов очистки воды, таких как биофильтрация, оказывается экономически нецелесообразным. Для содержания пресноводной рыбы (гидробионтов и ракообразных) применяются упрощённые схемы УЗВ, с механической очисткой и устройством обогащения воды растворённым кислородом за счёт аэрации или оксигенации. Проблема выделения аммонийного азота решается за счёт постоянной частичной подмены воды.

Температура воды поддерживается достаточно низкая, что позволяет гидробионтам не терять массу тела (они не питаются) и снизить до минимума загрязнение воды. Чаще всего применяется водопроводная артезианская вода. Следует отметить, что применение охлаждения воды при помощи чилера обычно оказывается нецелесообразным по причине дороговизны этого оборудования. С базы передержки живая продукция расходится по магазинам, и в этом случае температура воды на базе не должна быть значительно ниже температуры воды в аквариумах магазинов, поэтому следует поддерживать температуру водопроводной сети, которая везде оказывается примерно одинаковой.

УЗВ для передержки может быть очень разных размеров от аквариумов в магазинах или на рынках для розничной торговли до баз передержки для оптовой торговли, которые поставляют в эти самые магазины.

Можно рассмотреть подобного рода установку на простом примере. База передержки в Москве для оптовой торговли карпом. Карпа выгодно закупать оптом на юго-западе Беларуси и в Ростовской области России. Расстояние до обоих поставщиков примерно 1000 км, это значит, что возить маленькими машинами рыбу невыгодно. Типичная большая машина для перевозки живой рыбы имеет 10 контейнеров по 2,4 м³ каждый и может перевозить максимум 8 -10 тонн живого карпа. Соответственно и база передержки должна быть рассчитана на такое количество. Полезный объём емкостей должен быть не менее 40 м³, например, 10 емкостей по 4 м³. Если температура воды летом может быть выше 15 С, то потребуется оксигенация, при 10 С можно обойтись аэрацией. Понадобятся насосы и барабанный фильтр, который может быть заменён на другой тип фильтра, например, полочный отстойник. В общем случае возможно обойтись и без механического фильтра, учитывая тот факт, что рыба проведёт в дороге сутки с хотя бы одной подменой воды и значительная часть взвешенных веществ может быть удалена с водой, в которой перевозилась рыба. Расход свежей воды при этом возрастёт. При температуре воды 15 C потребуется не менее 50 м3/сутки свежей воды, при более низких температурах меньше. Целесообразно также иметь как аэрацию, так и оксигенацию, и насосы разной производительности больше и меньше, чтобы это оборудование можно было использовать в зависимости от загрузки и температуры. Для работы летом следует использовать кондиционирование воздуха. И предусмотреть разгрузку большой машины вместе с водой непосредственно в ёмкости базы передержки и удобство загрузки малых машин для доставки потребителям для снижения трудозатрат.

Оксигенация и Озонирование
Оксигенация (оксигенирование) — насыщение воды растворенным кислородом с использованием кислородного газа, который содержит большую долю кислорода, чем атмосферный воздух.

В рыбоводстве применяются следующие разновидности осксигенации воды:

  • пневматическая оксигенация, подача кислорода в воду через мелкодисперсные распылители. Это не самый эффективный метод, так как КПД использования кислорода, как правило, невысок. Применяется в основном при перевозке живой рыбы;
  • механическая оксигенация, механическое смешение кислорода с водой. Это более эффективный метод, позволяющий растворять кислород почти полностью. Механические оксигенаторы выпускаются несколькими зарубежными фирмами и устанавливаются, как правило, непосредственно в рыбоводные бассейны или подающие каналы;
  • распылительная оксигенация под давлением, распыление воды в кислороде внутри герметичного оксигенатора (например, оксигенаторы конструкции И.В. Проскуренко). Это достаточно эффективный метод, позволяющий насыщать воду кислородом до высоких концентраций. При этом метод довольно энергозатратный, требующий высокого давления как воды, так и кислорода;
  • струйная оксигенация, основана на гидродинамическом эффекте увеличения скорости в сужении, что обеспечивает как эжекцию (всасывание) так и дробление кислорода в воде. Данный метод в чистом виде в рыбоводстве не применяется и является слишком энергозатратным;
  • оксигенация с применением оксгенационных конусов. Технология заключается в том, что вертикально установленный широкой частью вниз конус является ловушкой для пузырьков газа при движении воды сверху вниз. Из-за того, что в узкой части конуса скорость движения воды выше скорости всплывания пузырьков, а в нижней части скорость движения воды ниже этой скорости, газ не может никуда выйти из конуса. Если соотношение газа и воды, а также давление внутри конуса подобраны правильно, то весь введённый в него кислород полностью растворяется в воде.
В качестве источников кислорода для систем осксигенации может использоваться как покупной сжатый или сжиженный кислород, так и кислород, вырабатываемый на месте из воздуха при помощи PSA или VPSA генераторов кислорода. Использование сжатого кислорода в баллонах экономически невыгодно и используется только при перевозке рыбы или в аварийных ситуациях. В Европе многие рыбные фермеры используют сжиженный кислород, тогда как в бывшем СССР генераторы кислорода оказываются экономически выгоднее. Как правило, чем выше давление кислорода на выходе генератора, тем больше он потребляет электроэнергии. Кроме этого, кислород, полученный из баллонов или жидкого кислорода, не пригоден для синтеза озона.

Применение осксигенации экономически оправдано, когда рыбу растят в бассейнах или ваннах, но не в садках или прудах. При этом работа должна быть организована таким образом, чтобы концентрация кислорода в ёмкостях с рыбой не превышала 150% от насыщения (равновесия с атмосферным воздухом), более высокие концентрации отрицательно влияют на выращивание рыбы.

При выращивании малька и молоди желательно не превышать 100 — 110% чтобы молодь имела впоследствии адаптивные свойства жить и расти при разных и концентрациях растворенного кислорода.

Нами разработана и внедрена собственная система осксигенации, которая представляет собой сочетание конусного и струйного методов. При этом используются конусы из нержавеющей стали собственного производства, которые обладают коррозионной стойкостью. Они могут работать как при заданном давлении, так и без давления и обеспечивать желаемую концентрацию кислорода (до 500%). Применение струйных аппаратов перед конусами позволяют повысить эффективность их работы, кроме того снимаются все требования к давлению кислорода, что позволяет использовать генераторы кислорода низкого давления, которые потребляют меньше электроэнергии. Таким образом, оксигенация может быть оптимизирована по затратам электроэнергии. Все материалы, которые используются в системе осксигенации, являются озоностойкими, поэтому в такую систему, на линии кислорода, может быть врезан генератор озона подходящей производительности в любое время. Система обеспечит растворение озона в воде вместе кислородом и утилизацию остаточного нерастворенного озон в газе.

Озонирование — обработка воды озоно-кислородной или озоно-воздушной смесью с целью очистки и/или обеззараживания.

Озонирование воды в рыбоводстве может быть двух видов. Собственно, озонирование, совмещенное с оксигенацией, позволяет вводить в воду до 4−5 мг озона на литр воды (чаще всего так много не нужно) для обеззараживания воды и улучшения её химического состава (снижение нитритов, окисление некоторых токсичных органических загрязнений, снижение цветности, дезодорация). При таком подходе на каждый миллиграмм озона в воду вводится 10−15 мг кислорода. Этот способ озонирования осуществляется с помощью с описанной выше системой осксигенации, путём врезания в линию кислорода генератора озона. Современные генераторы озона позволяют электрическим путём регулировать производство озона от 0 до 100% их производительности, следовательно можно легко регулировать дозу озона в зависимости от загрязнённости воды так чтобы не вызвать отравление остаточным в воде озоном у рыбы и получать нужную степень обеззараживания и очистки.

Второй вид озонирования является в чём-то аналогом флотации для морской воды. При этом пресная вода пенится гораздо хуже морской, поэтому для того чтобы она пенилась, используется озоно-водушная смесь (чаще всего разбавленная воздухом озоно-кислородная смесь), мелкодисперсные озоностойкие распылители и другая конструкция реакторов, чем для флотаторов (протеин-скимеров) морской воды. Такая обработка воды не насыщает её растворённым кислородом выше 100% и не гарантирует высокой степени обеззараживания или окисления нитритов, зато она даёт эффект удаления мелкодисперсных и коллоидных загрязнений и делает воду прозрачной при относительно небольших затратах электроэнергии.
Мальковый (инкубационно-мальковый) цех, цех для подращивания молоди
Мальковый (инкубационно-мальковый) цех, цех для подращивания молоди — отделение рыбной фермы, в которое поступает личинка (оплодотворенная икра) рыбы, а на выходе получается молодь принятого на ферме размера (обычно от 10 до 30 гр.) и приспособленная к условиям выращивания на ферме.

Выращивание жизнеспособной молоди является очень важным этапом в рыбоводстве, потому что от этого зависит успех выращивания рыбы в целом. При этом не играет особой роли, используются на рыбной ферме половые продукты, полученные от собственных производителей, или на других фермах закупается оплодотворённая икра, личинка или очень мелкий малёк. Закупать подращенную молодь на других фермах, как правило, нецелесообразно, потому что это даст возможность поставщику молоди произвести отбор, оставив наиболее крепкую и быстрорастущую молодь у себя. Правда это не означает обязательно, что молодь будет действительно слабой или тугорослой, потому что при изменении условий выращивания может измениться и критерий отбора, и медленно растущая рыба в одних условиях может быстрее расти в других. Во многих случаях мальковый цех дополнительно оснащается аппаратами для инкубации икры, т. е. становится инкубационно-мальковым. Мальковые цеха, как правило, достаточно универсальны, т. е. в них можно подращивать молодь разных видов рыб, но не одновременно.

Для выращивания молоди практически всех видов рыб вполне экономически оправдан специальный мальковый цех с полноценной УЗВ и регулируемой температурой. Это позволяет растить молодь в строго контролируемых условиях, при высоких плотностях посадки, и быстро, что позволяет с одной стороны получить раньше посадку для основных сооружений выращивания рыбы на ферме, с другой стороны провести несколько циклов подращивания молоди, например, до 2 при выращивании лососевых или 3 при выращивание осетровых.
В настоящее время в России имеются осетровые фермы, которые оснащены отдельными линиями с охлаждением воды, они могут получать половые продукты и/или личинку практически круглый год, поэтому количество циклов выращивания молоди может быть увеличено. В межсезонье, когда не осуществляется подращивание молоди основного вида, можно использовать мощности малькового цеха для разведения других видов рыб, например, теплолюбивых или декоративных (золотая рыбка или карпы-кои). Можно использовать такие цеха и для разведения диких и культурных видов рыб с целью зарыбления водоёмов.

УЗВ малькового цеха состоит из рыбоводных ванн, чаще всего двух типоразмеров, насосного приямка с основным и резервным насосом, фильтра механической очистки (необязательно), биофильтра, системы оксигенации — озонирования, выдерживателя воды, системы подачи и сбора воды, теплообменника (подогревателя). Механический фильтр может не использоваться в случае, если загрузка биофильтра свободно плавающая и имеется возможность «стряхивать» с неё лишние биообрастания. Выдерживатель воды предназначен для выдерживания обработанной озоно-кислородной смесью воды некоторое время с целью гарантированного распада остаточного озона, потому что молодь рыб очень чувствительна к нему, кроме того выдерживатель это некоторый запас готовой воды. Для подпитки УЗВ малькового цеха применяется только артезианская вода, причём в том случае, если она содержит повышенные концентрации железа, это практически не скажется на содержании железа в оборотной воде. Потребление свежей воды очень незначительно и может быть периодическим, а не непрерывным. Для подогрева воды можно применять простейший самодельный теплообменник, в качестве греющей стороны через который проходит вода системы отопления.

Часто мальковые цеха создаются на месте старых цехов с прямоточным водоснабжением. В этом случае можно применять для модернизации цеха имеющиеся сооружения, такие как сливные каналы, трубопроводы, ёмкости и ванны.

С одной стороны выращивание при высоких плотностях посадки хорошо закаляет молодь, с другой стороны, даже тщательное обеззараживание воды не гарантирует защиты от вспышек заболеваний. В таких УЗВ вполне возможно применение бактериостатических средств, таких как метиленовый синий, на работе биофильтра это практически не сказывается.
УЗВ для выращивания осетровых
УЗВ для выращивания осетровых – высокотехнологичная рыбная ферма с установкой замкнутого водоснабжения, предназначена для выращивания товарной рыбы отряда осетрообразных и их гибридов или получения товарной чёрной икры.

Несмотря на существование большого количества проектов и разновидностей УЗВ для выращивания осетровых, все они не сильно отличаются друг от друга. Основные отличия состоят в конструкции и числе рыбоводных бассейнов, тогда как система очистки воды во всех случаях сводится к схеме: рыбоводные бассейны – механическая очистка – биологическая очистка – регулирование температуры – насыщение растворенным кислородом – обеззараживание – рыбоводные бассейны. Иногда какие-то этапы могут отсутствовать, совмещаться или меняться местами. Размещаются такие установки для условий нашего климата в хорошо утеплённом отапливаемом здании. Плотность посадки осетровых может достигать 60 кг/м2 (при глубине 1 м 60 кг/м3). Производительность превышает 120 кг/м2.

Опыт создания подобных систем говорит о том, что главными являются следующие факторы:

  • обеспечение рыбы растворенным в воде кислородом с учётом того, что кислород не может быть весь использован рыбой, как правило, концентрация кислорода в бассейнах близка к его концентрации на выходе бассейнов;
  • конструкция бассейнов должна обеспечивать вынос из них взвесей и осадков, кроме того бассейны должны просматриваться до дна, чтобы видеть поедаемость корма и погибших или очень ослабленных рыб;
  • биофильтр должен быть нормально обслуживаемым и иметь несколько избыточную по отношению к расчётной площадь полезной поверхности, поток воды через него должен быть равномерным, без застойных безкислородных участков. Биозагрузка не должна быть слишком мелкопористой.
  • должно быть обеспечено как можно более равномерное поступление молоди в систему и как можно более равномерное извлечение (и, соответственно, сбыт) готовой продукции из системы.
  • ключевое оборудование жизнеобеспечения рыбы должно быть продублировано.
Осетроводная ферма с УЗВ может быть автоматизирована, что уменьшит как количество ручного труда, так и уменьшит зависимость от добросовестности работников. Однако, живую рыбу в любом случае оставлять надолго без присмотра нельзя и заменить рыбовода компьютером невозможно.

Мы считаем, что осетровая ферма с УЗВ может быть рентабельна начиная с производительности 25 тонн в год, при условии, что обслуживать её будут 1-2 человека, живущие непосредственно рядом с ней, до производительности 100 – 120 тонн в год при условии, что её будут обслуживать 5-6 наёмных работников (не считая сбытовиков).
При производительности выше 60 т/год ферма должна состоять из двух независимых модулей УЗВ, в один из которых входит мальковый цех и подращивание молоди, а во втором уже осуществляется доращивание рыбы до товара. Каждый модуль имеет независимую систему водообеспечения, свое собственное вспомогательное оборудование и позволяет поддержать температуру воды, отличную от температуры в соседнем модуле.

Для осетровой фермы с УЗВ используется, как правило, высокопроизводительное энергосберегающее импортное и отечественное оборудование и оборудование собственного производства, коррозионо-стойкие трубопроводы. Экономия на оборудовании часто в будущем приводит к большим потерям дорогой живорыбной продукции.

Также должен быть предусмотрен резервный источник электропитания.

Для подпитки свежей водой УЗВ-осетровника, например, на 100 т/год достаточно артезианской скважины производительностью до 10-12 м3 воды в час. Источник воды желательно также резервировать, например, имея собственную скважину иметь ещё и доступ к местному водопроводу на случай выхода из строя глубинного насоса. Необходимо также предусмотреть, куда сбрасывать отработанную воду с осадками, как правило, она содержит биогенные элементы (азот и фосфор) в количествах, вызывающих «цветение» водоёмов и сбрасывать её в них нельзя, только если через биопруд достаточной площади.

Производство товарной чёрной икры, используя только УЗВ, вполне возможно, но является делом сомнительной рентабельности. Существуют фермы, которые помимо больших УЗВ и бассейнов имеют отдельные установки замкнутого водоснабжения с охладителями воды (чилерами), которые позволяют получать икру круглый год за счёт охлаждения-нагревания производителей. Чаще всего такие отдельные УЗВ с охлаждением небольшие и создание их не представляет особых трудностей. Однако, это выгодно, как правило, если речь идёт о получение небольших количеств икры с целью размножения, но не промышленном производстве товарной икры. Также выращивание производителей в УЗВ представляется затруднительным, поскольку рост производителей приходится, как правило, целенаправленно замедлять. В противном случае вырастают производители большой массы тела, но у них развивается ожирение, которое замедляет, а то и вовсе приостанавливает половое созревание. Представляется более выгодным выращивание в УЗВ осетровых до какого-то веса, несколько большего чем обычный товарный, например, 3 кг для ленско-русского гибрида, далее с помощью УЗИ-сканирования из них отбирать лучших самок для содержания в дальнейшем вне УЗВ, например, на тёплых водах ГРЭС или на естественных температурах на юге в более тёплом климате.
Система оборотного водоснабжения (СОВ)
Система оборотного водоснабжения (СОВ) для выращивания форели — среднетехнологичная рыбная ферма в которой применяется УЗВ с большой подменой свежей воды и которая расположена вне отапливаемого помещения, предназначенная для выращивания форели или других холодолюбивых видов.

Применение высокотехнологичного УЗВ для выращивания форели, аналогичного УЗВ для осетровых, оказывается невыгодным по следующим причинам:


  • при более низких температурах, которые требуются для форели, снижается скорость биологической очистки, это означает, что требуется биофильтр большего размера, чем для осетровых при той же производительности;
  • форель может успешно, хотя и не так быстро как при оптимальных температурах, расти при температурах артезианской воды, которая имеется обычно в достаточном количестве. Для поддержания подобных температур не требуется высокотехнологичное УЗВ в отапливаемом помещении.
По этим причинам для выращивания форели целесообразно применять упрощённый вариант УЗВ — систему оборотного водоснабжения (СОВ). Наиболее рациональный вариант СОВ представляет собой бетонные сооружения, чаще всего прямоугольной формы, частично заглубленные в грунт, частично обвалованные грунтом. Сооружение делится внутренними перегородками на каналы для выращивания рыбы, отделение механической, биологической очистки, подающие каналы. Циркуляция воды осуществляется безнасосным способом — при помощи воздушного эрлифта, который также и является основным источником обогащения воды растворённым кислородом.

Такая система постоянно подпитывается достаточно большим количеством свежей артезианской воды. Например, для СОВ на 100 т форели в год требуется до 50 м³ воды в час. Артезианская вода не должна содержать общего железа более 0,5 мг/л, при большем содержании железа выращивание форели таким методом на артезианской воде невозможно.

В некоторых случаях можно для подпитки системы использовать поверхностную (речную, озёрную) воду. Зимой артезианская вода служит для предотвращения замерзания системы, летом для предотвращения перегрева. В условиях умеренного климата чем выше исходная температура артезианской воды, тем лучше. В связи со значительно большей проточностью свежей воды через СОВ в сравнении с УЗВ, вода, вытекающая из СОВ, менее загрязнена и обычно может быть сброшена в открытые водоёмы.

Следует отметить, что часто такие системы строятся вообще без реальной биологической очистки, когда мощность биофильтра заведомо в несколько раз меньше необходимой и он работает больше как механических фильтр. В этом случае аммонийный азот, выделяемой рыбой просто «вымывается» из системы водой. Это несколько удешевляет систему и делает её ближе к простой прямоточной, но сильно замедляет рост рыбы (что снижает производительность) особенно в летние месяцы, потому что не позволяет воде подогреваться под воздействием солнечного излучения.

В качестве механического фильтра может применяться керамзит или подобный материал с периодической регулярной промывкой, так и пластиковые тонкослойные отстойники. Очевидно, что последние эффективнее, но дороже. Дополнительно, сооружение СОВ может накрываться на зиму или на постоянно светостабилизированной полиэтиленовой плёнкой или листовым поликарбонатом, что позволяет зимой и в межсезонье сохранять более высокую температуру и тем ускорить рост рыбы и увеличить производительность. Укрывать имеет смысл только системы с полноценным биофильтром. В таких системах возможно и применение кислорода с механическими оксигенаторами, устанавливаемыми в общий подающий канал после эрлифта, работающие только в летние самые тёплые месяцы. В хорошо оснащённых, особенно укрытых системах, летом поддерживается температура 14-16 С, зимой не ниже 5 С, что обеспечивает значительное ускорения роста рыбы по сравнению с выращиванием в открытых водоёмах в садках.

Обычно в СОВ по выращиванию товарной форели сажается молодь штучной навеской начиная с 25 – 30 г. Такую молодь можно покупать и привозить с других ферм. Также для получения такой молоди иногда рядом строят дополнительную маленькую СОВ, но лучше использовать полноценный мальковый цех с УЗВ.
Гидрохимия
Мы рассмотрим только те вопросы гидрохимии, которые имеют отношение к рыбоводству. Важными показателями воды с точки зрения рыбоводства являются:

  1. Солевой состав;
  2. Растворённый кислород;
  3. рН;
  4. Аммонийный азот в связи с рН;
  5. Нитриты и нитраты;
  6. БПК и органические загрязнения;
  7. Железо и тяжёлые металлы;

1. Солевой сосав.
Пресная вода содержит соли, которые имеют значение для
использования этой воды в рыбоводстве. Соли натрия и хлора, в пресной воде значения не имеют, но соли кальция и магния важны. Прежде всего, следует отметить, что слабоминерализованная вода или вода, обессоленная обратным осмосом, не пригодна для питания УЗВ. Это связано с тем, что такая вода не обладает свойством т.н. буферности, свойством сохранять свой водородный показатель рН при добавление незначительных количеств кислоты. В УЗВ постоянно происходит процесс окисления аммонийного азота, выделяемого рыбой, в нитрат, что эквивалентно добавлению в воду небольших количеств азотной кислоты. Если вода содержит достаточное количество гидрокарбонатов и других подобных ионов, то они будут нейтрализовать эту кислоту и рН воды заметно не изменится. В случае слабоминерализованной воды рН быстро упадёт, вода станет кислой и непригодной для рыбоводства, кроме того скорость биологического окисления иона аммония в нитрат-ион начнёт замедляться.

С другой стороны, слишком жёсткая вода вредна для рыбы и создаёт повышенную нагрузку на её органы выведения (почки). Применение слишком жесткой воды может вызвать засорение осадками солей кальция микроэкранов барабанных фильтров, вентилей и т. п. Подходящая жёсткость воды для питания УЗВ или СОВ находится в переделах 2 — 8 мг-экв./л, тогда как для питания систем, более близких к прямоточным, подходит вода и с меньшей жёсткостью. Вода с жёсткостью более 10 мг-экв./л потребует дополнительного умягчения.

2. Растворённый кислород.
В артезианской воде, используемой для питания УЗВ или СОВ растворённого кислорода нет и он вводится в неё искусственно при помощи аэрации и/или оксигенации. Однако, внутри самой УЗВ или СОВ, также, как и в любой системе, использующей природную прямоточную воду (сетчатые садки, пруды, бассейны и т. п.), растворённый кислород является важнейшим показателем, обуславливающим успех производства. Для успешного выращивания практически любой рыбы (кроме рыб, способных дышать кислородом воздуха, таких как клариевые сомы) концентрация кислорода должна находится в т.н. «зоне неограниченного роста», т. е. когда рыба не затрачивает никакой дополнительной энергии на обеспечение своего тела кислородом. Для большинства видов рыб нижний предел «зоны неограниченного роста» составляет 50 — 70% от насыщения (равновесия с атмосферным воздухом), причём если для карповых рыб показатель ближе к 50%, то для лососевых 70%. Если концентрация кислорода опускается ниже, то рост рыбы замедляется, кормовой коэффициент (затраты корма на 1 кг прироста рыбы) увеличивается, и рыбоводство становится менее рентабельным. При повышении температуры выше оптимальных значений нижний предел сдвигается вверх, это связано как с уменьшением растворимости кислорода в воде, так и с увеличением его потребления при повышении температуры. Так, например, считается, что радужная форель может выдерживать до 23 С, тогда как выше, даже при близком к 100% насыщении воды растворённым кислородом, расход кислорода не компенсируется и начинается гибель. Применение оксигенации и насыщения выше 100% позволяет форели выдерживать эту и даже ещё более высокие температуры. С другой стороны, слишком высокие концентрации растворённого кислорода также нежелательны.

Даже рыб, способных дышать атмосферным воздухом, например, клариевого сома, необходимо растить при минимальной концентрации растворённого кислорода, равной 2 мг/л. Это связано как с наличием т.н. «кожного дыхания», т. е. близкие к поверхности ткани снабжаются кислородом, поступающим снаружи, так и с тем, чтобы избежать каких-либо анаэробных процессов внутри рыбоводных емкостей и трубопроводов, при которых могут образовываться токсичные для рыб загрязнения воды.

3. Водородный показатель рН.
Водородный показатель — это обратный десятичный логарифм концентрации в воде водородных ионов. Полностью нейтральной воде соответствует рН = 7, если рН>7, то вода имеет щелочную среду, если рН<7, то кислую. Рыба может жить только в узком диапазоне рН, в пределах 6 — 9.

Морская вода содержит много солей, в том числе и гидрокарбонаты и имеет рН 8,2 — 8,3. Благодаря высокому значению рН и большой буферности (см. выше) морская вода не подвержена «закислению» при работе в УЗВ. Но из-за её высокого рН морские гидробионты более чувствительны к иону аммония (см. ниже).

Высокие значения рН непригодны из-за выделения рыбой аммиака (см. ниже), то низкие значения делают воду непригодной из-за выделения рыбой свободной углекислоты СО2. В воде постоянно существует химическое равновесие

СО2+Н2СО3 <=> Н+ + НСО3- <=> 2Н+ + СО32-

Равновесие в щелочной среде смещается в правую сторону — связываются ионы водорода, а в кислой среде смещается в левую — концентрация ионов водорода повышается.


Зависимость соотношения свободной СО2 и связанной от рН отражена в таблице №1 ниже..

Организм рыбы постоянно выделяет свободную углекислоту и при росте концентрации её в воде такое выделение осложняется. До какой-то концентрации свободной СО2 это может компенсироваться специальными механизмами организма рыбы, что потребует дополнительной энергии (и как следствие, увеличения кормового коэффициента), выше какой-то рыба начинает отравляться не выведенным из организма СО2. В сооружениях очистки УЗВ значительная часть свободной СО2 удаляется за счёт аэрации (уходит с прошедшим через воду воздухом в атмосферу). Тем не менее, часто в УЗВ, особенно высокотехнологичном, за счёт работы биофильтра рН падает. В этом случае приходится для его поддержания добавлять в воду вещества, имеющие щелочную природу (чаще всего соду NaHCO3 или известь Ca (OH)2) или поддерживать воду в постоянном контакте с известняком для поддержания рН.
4. Аммонийный азот в связи с рН.
Сам по себе ион аммония NH4+ не ядовит для рыб, как и СО2. Организм рыбы выделяет свободный аммиак NH3 через жабры. Выделение аммиака, как правило, прямо пропорционально количеству съеденного корма, обратно пропорционально кормовому коэффициенту и зависит от состава корма.

Аммиак и ион аммония находятся в химическом равновесии

NH3 + H+ <=> NH4+,


которое в щелочной среде смещается влево – связывание ионов водорода, а в кислой вправо. Кроме рН, сильное влияние оказывает температура. Зависимость соотношения свободного и связанного аммиака приведена в таблице №2 ниже.

Концентрация свободного аммиака, с которой начинается угнетение большинства видов рыб составляет 0,05 мг/л. Исходя из этого, в типичном УЗВ-осетровнике при температуре 200 С и рН = 7,5 доля свободного аммиака от общего составит 1,2%, т.е. 0,012. Отсюда максимальная общая концентрация аммония может составлять 0,05/0,012 = 4 мг/л. Очевидно, что при большем рН или более высокой температуре меньше, да и держать постоянно вблизи критических значений нельзя, поэтому в УЗВ-осетровнике обычная концентрация общего аммония поддерживается в пределах 1 – 2 мг/л.

В морской воде при рН = 8,2 и той же температуре доля свободного аммиака составит примерно 5,8% или 0,058. В этих условиях максимальная концентрация аммония может составить 0,05/0,058 = 0,86 мг/л. Именно этот факт является причиной того, что биофильтры, созданные для работы на морской воде, всегда работают на пресной, тогда как биофильтры, созданные для работы на пресной воде, не обязательно смогут работать на морской.

5. Нитраты и нитриты.
Считается, что нитраты NO3- для рыбы нетоксичны и она может выдерживать до1000 мг/л. Также считается, что нитраты не проникают в ткани рыбы и рыба, выращенная при высоких концентрациях нитратов не накапливает их в своих тканях. В типичных УЗВ такая концентрация нитрата обычно не достигается. В первую очередь за счёт их вымывания из системы, но в некоторых случаях значительное поглощение нитратов может происходить и на биофильтре (при определенной конструкции и режиме работы биофильтра) несмотря на высокое содержание кислорода в воде. Тем не менее, в случае, если необходимо свети к минимуму (почти к нулю) водопотребление, необходимо предусматривать денитрификацию.

В отличие от нитратов, нитриты NO2- сильно токсичны для рыб. Часто нитриты называют «ядом крови», потому что они, взаимодействуя с гемоглобином крови нарушают перенос кислорода к тканям. Признак длительного воздействия повышенных концентраций нитритов на рыб – изменения цвета жабр с ярко красных, но почти коричневые. Предельно допустимой концентрацией нитритов считается 0,25 мг/л.

В УЗВ небольшие концентрации нитрита всегда присутствуют, это связано с двухступенчатым механизмом работы нитрифицирующей микрофлоры. При запуске биофильтров, как правило, на какой-то стадии случается «всплеск» нитритов. Это связано с тем что химическая реакция окисления аммония в нитрит имеет значительно больший энергетический выход, чем химическая реакция окисления нитрита в нитрат, поэтому микрофлора, осуществляющая первую стадию нитрификации, растёт намного быстрее. В какой-то момент складывается ситуация, когда микрофлора, производящая нитриты, уже выросла, а микрофлора, преобразующая нитрит в нитрат ещё нет. Бороться с первоначальным всплеском можно тем, чтобы нагрузка на биофильтр росла медленно, желательно, вместе с рыбой.

Нитриты легко окисляются в нитраты озоном, по этой причине озонирование является надёжным методом снижения концентрации нитритов.

6. БПК и органические загрязнения.
БПК – биологическое потребление кислорода. Обычно применяется показатель БПК5 – биологическое потребление кислорода за 5 суток. Этот показатель показывает, сколько кислорода нужно для биологического окисления органических загрязнений воды. Таким образом БПК показывает не просто сколько органических загрязнений содержится в воде, но и насколько они легко биохимически разрушаемы. Само по себе БПК воды никак не влияет на рыбоводство, за исключением того что может потребоваться несколько больше кислорода, так как некоторая (незначительная) его часть может пойти на окисление загрязнений, а не только на дыхание рыб.

Некоторые органические загрязнения могут быть токсичными для рыб. Это в основном те, которые образуются при анаэробном (в отсутствии кислорода) разложении органических веществ и осадков. Такие процессы могут происходить как в биофильтре так и в самих рыбоводных бассейнах, если их конструкция не обеспечивает вымывание осадков и/или если проток воды через них слишком низкая.

7. Железо и тяжёлые металлы.
Железо, содержащее в артезианской воде, иногда не позволяет использовать её для рыбоводных целей. Для подпитки УЗВ с незначительной подменой воды достаточно чтобы концентрация общего железа не превышала 2-3 мг/л. Для выращивания форели требования более жёсткие: железа не должно быть более 0,5 мг/л. Для приготовления морской воды железа вообще не должно быть более 0,1 мг/л. Особенно вредно оказывается для рыбоводства закисное железо, которое при контакте с растворённым в воде кислородом быстро превращается в окисное, которое начинает медленно коагулировать и выпадать в осадок, забивая рыбе, особенно мальку, жабры и затрудняя газообменные процессы. Помимо железа в природных водах иногда встречается марганец. В общем случае он ведёт себя подобно железу, т.е. также выпадает в осадок в нейтральной среде при контакте с растворённым в воде кислородом. Но к концентрации марганца требования жестче чем к железу, вода для рыбоводства не должна содержать его выше 0,3 мг/л.

Наличие в воде других металлов, таких как медь, хром, никель и т.п. не допускается, потому что такие металлы могут накапливаться в тканях тела рыбы и делать её фактически несъедобной. Такие металлы редко встречаются в природных водах, если они присутствуют, то чаще всего они вызваны антропогенным загрязнением воды.

Cодержание соединения в % при 25*С
Содержание NH3 (в %) при значениях pH
Оставьте заявку и мы свяжемся с Вами, чтобы обсудить детали
Или позвоните нам +7 (926) 342-66-00
Ваш E-mail
Ваш телефон
Ваше имя
Ваши пожелания
Это поле необязательно к заполнению
Для заказа и уточнения вопросов позвоните нам, напишите на почту или в соцсети.
Вячеслав Миронов - консультации по водоемам, проектам, сметам, системам фильтрации, строительство, монтаж
Телефон: +7 (926) 342-66-00
E-mail: mironov.v@gmail.com
Офис: Московская область, г. Пушкино

Ксения Пузрова - маркетинг, реклама
Телефон: +7 (916) 274-73-14

E-mail: xenia.puzrova@gmail.com